On a Discrete Version of Tanaka’s Theorem for Maximal Functions

نویسندگان

  • JONATHAN BOBER
  • EMANUEL CARNEIRO
  • LILLIAN B. PIERCE
چکیده

In this paper we prove a discrete version of Tanaka’s Theorem [19] for the Hardy-Littlewood maximal operator in dimension n = 1, both in the non-centered and centered cases. For the non-centered maximal operator f M we prove that, given a function f : Z→ R of bounded variation, Var(f Mf) ≤ Var(f), where Var(f) represents the total variation of f . For the centered maximal operator M we prove that, given a function f : Z→ R such that f ∈ `1(Z), Var(Mf) ≤ C‖f‖`1(Z). This provides a positive solution to a question of Haj lasz and Onninen [6] in the discrete one-dimensional case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

Positive solutions for discrete fractional initial value problem

‎‎In this paper‎, ‎the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement‎ .‎The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...

متن کامل

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

Sum Formula for Maximal Abstract Monotonicity and Abstract Rockafellar’s Surjectivity Theorem

In this paper, we present an example in which the sum of two maximal abstract monotone operators is maximal. Also, we shall show that the necessary condition for Rockafellar’s surjectivity which was obtained in ([19], Theorem 4.3) can be sufficient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011